If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2=48
We move all terms to the left:
b^2-(48)=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| x8-5x4=0 | | 7(u+3)=91 | | 2(4x+40)=2x+40 | | 2x+6(-x-11)=-106 | | 63=7(1+4x) | | z/4−10=-7 | | -5(2x-3)+4x=-3x+6 | | m/3+16=18 | | -4x+13=49 | | 2.6x-100=6.76-10x | | .75+3=6(x-3) | | -4x-3(-2x-13)=21 | | 13=7±2x | | x/2+9.8=-3.45 | | 7x-2(4x-2)=15 | | 18-((3/2)*y)=15 | | 2(4x+2)=40+40 | | 12x-6+x=8x+4 | | -12x-39=-401/2 | | 9-2/7x=13 | | 10r+19=-28+10r | | 4x+1=3x–4. | | -9x+16=124 | | f/3−3=1 | | −3x=−2x−6-3x=-2x-6 | | 2x-(x+6)+3=14 | | 4(r+9)=4r+36 | | 2(4x+20)=8x+40 | | 3y+4=5y+10 | | 9v+81=18v | | 3n+2n-6=-26 | | -3(x)=-18 |